Direct activation of second messenger pathways mimics cell adhesion molecule-dependent neurite outgrowth
نویسندگان
چکیده
We present evidence that direct activation of neuronal second messenger pathways in PC12 cells by opening voltage-dependent calcium channels mimics cell adhesion molecule (CAM)-induced differentiation of these cells. PC12 cells were cultured on monolayers of control 3T3 cells or 3T3 cells expressing transfected N-cadherin in the presence of KCl or a calcium channel agonist Bay K 8644. Both potassium depolarization and agonist-induced activation of calcium channels promoted substantial neurite outgrowth from PC12 cells cultured on control 3T3 monolayers and increased neurite outgrowth from those cultured on N-cadherin-expressing 3T3 monolayers. The potassium-induced response could be inhibited by L- and N-type calcium channel antagonists and by kinase inhibitor K-252b but was unaffected by pertussis toxin. In contrast activators of protein kinase C did not stimulate neurite outgrowth, and the neurite outgrowth response induced by activation of protein kinase A was not inhibited by calcium channel antagonists or pertussis toxin. These studies support the postulate that CAM-induced neuronal differentiation involves a specific transmembrane signaling pathway and suggest that activation of this pathway after CAM binding may be more important for the neurite outgrowth response than CAM-dependent adhesion per se.
منابع مشابه
Calcium influx into neurons can solely account for cell contact- dependent neurite outgrowth stimulated by transfected L1
We have used monolayers of control 3T3 cells and 3T3 cells expressing transfected human L1 as a culture substrate for rat PC12 cells and rat cerebellar neurons. PC12 cells and cerebellar neurons extended longer neurites on human L1 expressing cells. Neurons isolated from the cerebellum at postnatal day 9 responded equally as well as those isolated at postnatal day 1-4, and this contrasts with t...
متن کاملTyrosine kinase inhibitors can differentially inhibit integrin- dependent and CAM-stimulated neurite outgrowth
We have used monolayers of parental 3T3 cells and 3T3 cells expressing one of three transfected cell adhesion molecules (CAMs) (NCAM, N-cadherin, and L1) as a culture substrate for rat cerebellar neurons. A number of tyrosine kinase inhibitors have been tested for their ability to inhibit neurite outgrowth over parental 3T3 monolayers which we show to be partly dependent on neuronal integrin re...
متن کاملFGF inhibits neurite outgrowth over monolayers of astrocytes and fibroblasts expressing transfected cell adhesion molecules.
We have cultured cerebellar neurons on monolayers of cortical astrocytes in control medium or medium containing recombinant basic fibroblast growth factor (FGF). FGF was found to inhibit neurite outgrowth, with a significant effect seen at 0.5 ng/ml and a maximal effect at 10 ng/ml. FGF increased the production of arachidonic acid (AA) in cerebellar neurons, and when added directly to cultures ...
متن کاملGanglioside modulation of neural cell adhesion molecule and N-cadherin- dependent neurite outgrowth
We have used monolayers of control 3T3 cells and 3T3 cells expressing transfected human neural cell adhesion molecule (NCAM) or chick N-cadherin as a culture substrate for PC12 cells. NCAM and N-cadherin in the monolayer directly promote neurite outgrowth from PC12 cells via a G-protein-dependent activation of neuronal calcium channels. In the present study we show that ganglioside GM1 does not...
متن کاملA peptide from the first fibronectin domain of NCAM acts as an inverse agonist and stimulates FGF receptor activation, neurite outgrowth and survival.
Neural cell adhesion molecule (NCAM) contributes to axon growth and guidance during development and learning and memory in adulthood. Although the Ig domains mediate homophilic binding, outgrowth activity localizes to two membrane proximal fibronectin-like domains. The first of these contains a site identified as a potential FGF receptor (FGFR) activation motif (FRM) important for NCAM stimulat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 118 شماره
صفحات -
تاریخ انتشار 1992